1.COS(A+B)=cosAcosB-sinAsinB
2.cos(A-B)=cosAcosB+sinAsinB
3.sin(A+B)=sinAcosB+cosAsinB
4.sin(A-B)=sinAcosB-cosAsinB
5.tan(A+B)= (tanA+tanB)/(1-tanAtanB)
6.tan(A-B)= (tanA-tanB)/(1+tanAtanB)
Single angles
1sinx=3sin(x/3)-4sin3 (x/3)
=2sin(x/2)cos(x/2)
2.cosx=cos2(A/2)-sin2(A/2)
=1-2sin2(A/2)
=2cos2(A/2)
=(1-tan2(x/2)/ (1+tan2(x/2)
3.tanx=(2tan(x/2))÷(1-tan2
(x/2))
=(3tan(x/2))-(tan3( x/2))÷(1-3tan4(
x /2))
Double
angles
1.sin2x=2sinxcosx=2tanx/1+tan2x
2.cos2x=cos2x-sin2x
=2cos2x-1=1-2sin2x
=1-tan2
x/1+ tan2 x
3.tan2x=2tanx/1-tan2x
Triple angles
1.sin3x=3sinx-4sin3x
2.cos3x=4cos2x-3cosx
3.tan3x=(3tanx-tan3x)/(1-3tan2x)
Product to sum
1.sinAsinB=1/2[cos(A-B)-cos(A+B)]
2.cosAcosB=1/2[cos(A-B)+cos(A+B)]
3.sinAcosB=1/2[sin(A+B)+sin(A-B)]
4.cosBsinA=1/2[sin(A+B)-sin(A-B)]
Sum to product
1.sinA+sinB=2sin [A+B/2]cos [A-B/2]
2.cosA+cosB=2cos [A+B/2]cos [A-B/2]
3.sinA-sinB=2cos [A+B/(2)]sin [A-B/2]
4.cosA-cosB=-2sin [A+B/2]sin [A-B/2]
Square forumula
Sin2 x=(1-cos2x)÷2
Cos2 x=(1+cos2x)÷2
Tan2 x=(1-cos2x)÷(1+cos2x)
Sin2 (x/2)=(1-cosx)÷2
Cos2 (x/2)=(1+cosx)÷2
Tan2 (x/2)=(1-cosx)÷(1+cosx)
Additional formulas
(1)1+sin2x=(cos x+sin x)
(2)1-sin2x=(cos x-sin x)
(3)1+sinx=(cos(x/2)+sin(x/2)
(4)1-sinx=(cos(x/2)-sin(x/2)
(5)1+cos2x=2 cos2 x
(6)1-cos2x=2
sin2 x
(7).(1-cosx)=2sin2(x/2)
(8).(1+cosx)=2cos2(x/2)
When “2” is multiplied
(1).2sinAcosB=sin(A+B)+sin(A-B)
(2)2cosAsinB=sin(A+B)-sin(A-B)
(3)2cosAcosB=cos(A+B)+cos(A-B)
(4)2sinAsinB=cos(A-B)-cos(A+B)
(5)tan(∏+A)=1+tanA/1-tanA
(6)tan(∏-A)=1-tanA/1+tanA
(7)tan-1 (x+y)/(1-xy)=
tan-1x+ tan-1x
(8)tan-1(x-y)/(1+xy)= tan-1x- tan-1x
Algebraic forumula
1.a0 =1
2.a2-b2=(a+b)(a-b)
3.a3-b3=(a-b)(a2+ab+b2)
4. a3+b3=(a+b)(a2-ab+b2)
5.(a+b)3=a3+3a2b+3ab2+b3
6.(a-b)3=a3-3a2b+3ab2-b3
No comments:
Post a Comment